Monday, November 28, 2011

Basic astrophotography image processing in GIMP - Part 2: increasing SNR (image alignment, integration and enhancement)

I thought this section deserved more attention. Leaving off in part 1, we discuss combining images - to use astrophotography jargon, stacking and aligning - more correctly, registration.

Please remember that these tutorials are intended for beginners, using very basic equipment and software. The methodology is the basics of image calibration and processing, but very much hands on, using what we have at our disposal.

Recapping, the purpose of combining images is to increase the signal to noise ratio (SNR); that is, less noise and more signal, improving the overall appearance of our combined final image - our integrated image (more jargon).

We are going to select the best light frames and combine them into a single image. But, noise reduction strategies start before uploading images to our computer. We employ a nifty method during image capture; that is, we make sure that our images are slightly offset one from the other during the imaging session (yet more jargon). The technical term for this is dithering, a science and a separate discussion altogether.

For our purposes however, we will take advantage of our fixed set up. We note that the stars move across the sky and change position from East to West at 15.0416 degrees/hour (the siderial rate), we let the stars drift across the camera sensor between exposures. Of course, after a while the object that we are imaging will drift out of view. For 6 or 10 images there should be no need to recenter our target.

In part 1 we exposed for 10 seconds. Adding a 3 second delay between exposures ensures that a few pixels separate the next image from the previous - in effect offsetting our images. Very crude dithering - effective all the same. And, furthermore, once complete, our total exposure time is 60 seconds vs 10 seconds. However, SNR increases by the square root of the number of combined images. 2 images increases SNR by 1.414 - approximating for our purposes.

So, starting where we left off in part 1, the image below shows the second and third images in our set of calibrated light images - we have already aligned the bottom and second image in the stack. In this case, the third image is selected with Mode set to Difference (and View 8:1, for clarity). This layer is transparent, showing the difference between the two images as they came out of the camera. We can use the drag tool to align the transparent (difference layer) with the image below.

siderialrotatediff.jpeg

And this is the result in Difference mode. The pixels have been aligned.

align.jpeg

We then set Mode to Normal and select the image above, by selecting its ‘eye’ and highlighting the layer, setting its Mode to Difference. As before we drag the image into alignment with the image below, and so on up the stack.

Note: We loaded our images, File > Open as Layers, and need to deselect the ‘eyes’ of the images above the image that we are dragging so that it is visible.

The image below is the first of our image stack (the ‘eyes’ above it are deselected to make it visible). It’s noisy.

callightsingleframe.jpeg

Lets see what happens when we average the images; that is, with Mode set to Normal for all images, (all ‘eyes’ selected), we set the Opacity slider of the bottom image to 100% - the default setting. Select the second image and set it to 50%, third to 25%, 4th to 12.5%, 5th to 6.3% and our 6th image to 3.1%.

As you proceed up the layers, note the change - dithering has been to good effect and pixels that were not removed during calibration are hidden behind good pixels. Additionally, because ambient noise is random the image is becoming less noisy. If we had 50 or 100 images, noise would be reduced even further. Still, for 6 images the result is impressive - as below - and much smoother.

callight6framesaveraged.jpeg

Just to finish things off, Image > Flatten, to fuse all the layers together. Apply a sharpen algorithm to the luminous layer. This can be found at, FX-Foundry > Photo > Sharpen > Luminosity Sharpen. You can also use, Filters > Enhance > Sharpen (Smart Redux), or any of the available sharpen algorithms available for GIMP. Avoid the use of unsharp mask if you can. It too, tends to overdo the image (my personal view).

luminositysharpen.jpeg

And here is our completed image.

orionm42completed.jpeg

For comparison, the image below is the final image from part 1, which is a single layer, as opposed to 6 layers in the image above.

Comparing the position of the constellation Orion on the frames shown, it should be evident that any one of our light images may be selected as the base or background image, framing the scene as preferred. Terrestrial objects do not align in any case, and we have to live with that.

flattenedcalibratednormflat.jpeg

The availability of free programs to perform calibration, registration and integration, and then using GIMP to finish off with brightness, contrast, colour and enhancement, makes the process much easier. (Keep in mind that images that contain terrestrial objects may interfere with alignment in some programs, essentially designed to align stars).

The next step perhaps, is to use RegiStax or Deep Sky Stacker (DSS) to do all the heavy lifting (calibration, registration and integration of our images) and follow up with GIMP. Now we are getting into serious amateur stuff. But, we can still use our fixed tripod/camera set up, to take beautiful shots of the Milky Way, well beyond the spectrum of the human eye.

StarTools is new and innovative astrophotography processing program. The author has gone to extraordinary lengths to create a program applicable to amateur and professional astrophotographers. ST is an image processing toolbox, that is non-destructive to your image data. If desired it will track every processing step, among many other attributes, including intelligent application of detail sensitive noise reduction to the final draft image. But, I suggest reading what the author has to say and trying out the demo version, which is fully functional, except for image saving. Be patient. There is a learning curve associated with all image processing applications.

Perhaps you need one of these.

Saturday, November 26, 2011

Tangent Error Minimized Tracker: a Double Arm Drive

Double Arm Drives have been used to photograph the night sky for over 20 years. Originally designed by Dave Trott, based on the Haig or Scotch mount (otherwise known as a Barn Door Tracker), the Double Arm Drive is a camera platform used to track and capture images of celestial objects using long exposure times. The design is conventional and attempts to refine the tracking performance of the double arm drive. Hence, the Tangent Error Minimized “Preloaded” (TEM) Tracker - this is a prototype.

However, before proceeding this neat little design may be preferable for some readers. It is small and compact and can be driven using the Arduino electronics described later in this post, if desired. I really like what Gary Seronik has done with this design.

This how to is intended for a wide audience, consequently, there is lots of info and does not assume previous experience… Let’s get started.

Mathematics of the Double Arm Drives at Dave Trott’s site - for the mathematically literate.

A few useful notes?

The unit had to be easy to build and accurate. A steel rule, sharp pencil, basic tools and a small drill, should be all that’s needed. Having said that, built-in adjustments can be used to fine tune performance to overcome minor fabrication errors.

I’ve provided as much detail as possible, along with the Arduino code, PCB template and Eagle board, for those who would like to have a commercially made Arduino shield.

In hindsight, the conventional layout is best - the camera arm, as shown in the images of the prototype, is not too stable and needs restraining to prevent the camera and lens toppling.

Although stepper motors are reliable and accurate, vibration can be a problem. A solution is gearing, which also increases torque at the drive shaft. An ideal solution is the 5v 28BYJ-stepper (Note: although the 28BYJ is advertised as 64 steps, it is acutally 32 steps? Oh well! it’s very inexpensive and does a good job).

Besides the dimensions of the tracker, packing up the camera arm hinge with 4 thicknesses of 80GSM A4 paper (0.4mm), improves tracking overall.

Astro-TEM-20110603-Camera-Arm-Riser-Concept.jpg

Image Processing

The reader will want to process their images. A low cost solution is GIMP, however, Deep Sky Stacker and Star Tools is a more sophisticated image processing solution.

Basic image processing Part 1
Basic image processing Part 2

TEM Tracker

Front and rear views - the reduction drive is more effective. Increasing torque at the drive screw and minimizing stepper motor resonance.

imag0177.jpegimag0179.jpegastro-20121006-m8-m20-milkyway.jpegtailofscorpio.jpeg

The Lagoon Nebula M8 and M20 the Triffid Nebula. Composite of 9, 30 second frames.Tail of Scorpio toward the centre of the Galaxy - M7, M6, the Butterfly Cluster and Cats Paw Nebula - 21 30 second frames. Taken with a FujiFilm XPro1, 60mm, f/2.4, iso800 and preprocessing in Pixinsight (Deep Sky Stacker is free) and post processing in Star Tools. I went to the trouble of taking bias, dark and flat calibration frames.

The Equatorial Wedge (EW) provides adjustment of altitude (latitude), limited to a range of latitudes in which the device is expected to be used. If attached to an adjustable tripod, directly to the Altitude board, the Azimuth board is not required and may be omitted. Although, an EW is a more rigid design and easier to set up, as shown above.

Notes:

For simplicity of construction the Conventional Layout is recommended. Accurate dimensions and ensuring that the Tracker is flat when closed will ensure that it performs as expected. All Tracker dimensions are metric (unless otherwise stated), including the Drive Shaft thread.

astro-tem-temtrackerlayout.jpg

For the non-metric world, imperial measurements for use with the 1/4 inch 20 tpi drive screw can be found at the bottom of the page in the appendix;

Design and performance testing

The dimensions of the TEM Tracker provide for very accurate tracking in the first 15 to 20 minutes of operation and subsequent tracking error is minor to 60 minutes. A design goal was accurate tracking for up to 60 minutes. In practice, performance is very accurate up to 90 minutes.

Geometry

temgeometry.jpg

Some helpful definitions

Siderial rate: The rate at which the Earth rotates on its axis - approximately 15.0416 degrees/hour.

Drive cycle: From boards closed to 60 minutes (zero to nominally, 15.0416 degrees).

Contact Point: The physical point at which the Drive Arm lifts the Camera Arm - 349.95mm (350mm).

Optimal Contact Point: The position at which the contact point ‘would’ intersect the Camera Arm, if it were to move (optimally) throughout the drive cycle. In practice, too complex.

Points of Rotation: Hinge and pinion centers should line up when the Tracker is closed, except that the Camera-arm hinge is slightly elevated. The performance of the Tracker is predicated on this arrangement - its the zero datum.

temrotationpoints.jpg and riser detail.

Straining at Gnats

A spreadsheet was used to calculate Drive Arm and Camera Arm dimensions, with tracking tolerances set to 4 decimal places of a degree, using the following fixed parameters;

motor speed, 1 rpm ; drive screw pitch, 1 thread/mm (6M (6mm) or 8mm fine - which has the same 1 tpm pitch as 6M).

Astro-TEM-20110603-TEMCalculatorSnippet.jpg

Camera Arm - Drive Arm Trend

temthetatrend.jpg

Optimised angular displacement of the Camera Arm was calculated to 4 decimal places at 1 minute intervals for 60 minutes; i.e., 15.0416/60. Optimal contact points were determined and match the displacement of the Camera Arm at these intervals. The start and end points being 349.95 (350mm) and 347.11mm, respectively.

With the contact point fixed at 350mm (349.95mm) the Camera Arm is driven through 14.9517 degrees (in 60 minutes). If the contact point is fixed at 347.11 mm the Camera Arm is driven through 15.0416 degrees, which is optimal but problematic, because error is introduced during the early part of the drive cycle. The object is to drive the Camera Arm between these two points and take advantage of accurate performance at both ends of the drive cycle. This can be achieved by raising the Camera Arm hinge 0.4mm (4 thicknesses of 80gsm paper).

Calculating contact points made it possible to verify the arc derived from the CAD program; angles subtended from the Camera Arm hinge to the Camera Arm arc correspond very closely to the optimal contact points.

How did it shape up - Performance

A Canon G9, fitted with a 2x tele-converter lens with the camera lens set at 24x digital zoom, an approximate focal length of 1600mm, was used to take 10 x 64 second exposures (Spica, southern hemisphere) over 22 minutes, of which 5 were stacked, showing no apparent trailing. The others, subject to atmospheric distortion and vibration due to construction faults, were discarded. Similarly, trailing was not apparent. Spica1 and Spica5 are the first and last in the series of 10 exposures - true!

Accurate tracking was observed > 30 minutes; that is, 15 minutes to resolve polar alignment using the drift method, 10 minutes to verify tracking and 22 minutes of photography, including a period of approximately 5 minutes where the setup was unattended after the shooting cycle was complete.

Spica - 5 x 64 second exposures over 22 minutes
Astro-TEM-20110603-SpicaTestImage-1.jpgAstro-TEM-20110603-SpicaTestImage-2.jpgAstro-TEM-20110603-SpicaTestImage-3.jpgAstro-TEM-20110603-SpicaTestImage-4.jpgAstro-TEM-20110603-SpicaTestImage-5.jpg

To show that the images are aligned and verify the ‘authenticity’ of tracking, in-camera software (CHDK) was used to combine/stack the Spica images. Compare the 5 sub exposures.

Spica Astro-TEM-20110603-SpicaCompositeTestImage.jpg

Software control of motor speed is optimal because it eliminates a variable that tends to mask other errors, such as construction faults and/or poor polar alignment.

Programming an ‘Arduino’ board, fitted with a motor shield provides very accurate and consistent motor speed. This arrangement was used to test the tracker. Alternatively, Google other types of conventional circuitry.

Polar Alignment

Planning is the key to acquiring quality exposures, which depends, in part, on proper polar alignment.

Device leveling, latitude setting and finding True North or True South (depending on hemisphere) is essential to accurate polar alignment - finding TN or TS can be the most difficult and frustrating nightly chore. Setting up references/datums during the day minimizes efforts in the dark when we should be imaging.

If you have access to Google Maps. TN/TS can be referenced to natural lines, buildings or fence lines, by measuring the angle between a reference line and TN/TS (which is, of course, vertically up and down the page (screen shot)).

Locate two legs of the tripod on the reference line and the third perpendicular to the reference line. Now point the axis of the drive arm hinge to TN/TS; that is, the angular difference between the reference line and TN/TS measured from Google map.

Next level the azimuth/base board of the tracker, set the latitude at your location by adjusting the altitude board up or down and check alignment with TN or TS for accuracy.

polar_align_tripod.png

Having completed this task once, nightly set up at the same location and datums, perhaps marked on the ground, is a 3 minute job. If you have a GPS equipped phone/tablet, record the latitude and longitude of the location.

A polar alignment scope, if you have one, is the traditional polar alignment method - wide field imaging at short focal lengths is tolerant of small polar alignment error.

Shoot an image and check for drift - elongated stars. Make very small adjustments in azimuth (rotating the azimuth board) and latitude (adjusting the angle of the altitude board) to further improve polar alignment. That is, until stars are round for the chosen exposure time.

I haven’t tried this and you may prefer the curved rod tracker design.

Construction Notes

Astro-TEM-20110603-TEMPlan.jpg

Providing the Critical Dimensions, Points of Rotation and other design conventions are observed, performance should be consistent in various configurations.

Preparing the drive end, before committing to other measurements, referenced to the centre of the Drive Shaft, is preferable, making sure that the 20mm (nominal) drive shaft holes in the top and bottom boards are aligned prior to marking the location of other components. That is, marking out the motor/drive shaft assembly end first, will minimize construction errors, in particular the placement of hinges.

The boards pictured are 17mm ply coated with laminate - a cut-off picked up at a timber yard. This material is used for concrete form-work and is very stable - resists warping etc.

Notice that the motor is mounted on the top board and hinged. It may be mounted on the bottom board in a similar fashion - a matter of preference. Importantly, the centre of the drive shaft should be coincident with the centre of the motor mount hinge and the centre of the Drive Nut pinions. It may be necessary to ‘pack the motor up’ to provide clearance between the Drive Nut and the motor shaft.

An easy way to make Drive Shaft pinions, and have them match up with the Motor Mount hinges, is to cut the ends off the hinges to be used for the Motor Mount. The part with the pin is retained (see photo); additional holes are drilled to accept locking screws - use tape to hold things in place while drilling.

Another refinement is the use of springs on the pinions to minimize slack in the assembly. Alternatively, remove the pins and tap threads to fit grub screws for centering the Drive Nut (recommended).

While it is important to ensure that everything is properly aligned during construction, it is recommended that the Tracker be started slightly open - say 10 - 15mm - to stabilize the drive shaft and pinion. With the Tracker closed the drive shaft tends to lean, due to its proximity to the drive nut pinion assembly.

Nylon nuts and bolts can be easily modified with side-cutters, and are useful replacements for hinge pins and pinions - they tend to reduce the transmission of motor resonance. Nylon threads are noticeably tighter.

Tip - place a small ball of Blutak on the end of the screw before pushing it into the hinge - this will further isolate hard surfaces without compromising rigidity.

Astro-TEM-20121006-TEMAnnotate.jpg

Note: Drive Shaft & Nut Assembly (replaced with a nylon sleeve and plastic tube insert tapped to 6mm)
Astro-TEM-20110603-MotorShaftDriveScrewFitting.jpg
Astro-TEM-20110603-Drive-Screw-Drive-Gimbal.jpg

Azimuth and Altitude

If intending to mount the drive on an adjustable (sturdy) tripod, the azimuth board may be omitted.

imag0179.jpeg

Camera Arm

Be careful of heavy telephoto lens that may topple the Camera Arm - restraint is necessary.

Electronics

EDIT: Update - for L293D read L293NE, which seems to run the stepper smoothly. Half stepping included in Arduino code - see acknowledgements for author credit.

The Printed Circuit Board (PCB) is designed as a motor shield and fits on top of the Arduino board. It utilises an L293D or SN754410NE H-Bridge bipolar stepper driver, and a ULN2003AN (or similar) to drive a unipolar stepper motor. A three position switch selects Forward, Stop and Reverse and a ‘Kill Switch’ stops the motor once the Drive Arm is back in the start position; the motor is held in position with its coils energised. Turn off supply power to rotate by hand, if necessary.

Limit Switch
temlimitswitch.jpg

The L293D is probably a better choice because it has in-built protection to prevent damage to your Arduino from voltage spikes generated by the motor; the SN754410NE does not. However, the use of the Arduino pull-up resistors may well serve to provide additional protection; no problems have been experienced to date.

The L293D and SN754410NE use two separate power sources, one for the chip and one for the motor. As such, the motor shield is designed to provide several control configurations. For example, the SN754410NE may utilise a “power-off” kill switch, or the Arduino logic. Similarly, for the L293D, the board may also be configured to remove power from the logic and power supply. This is more derivative, through design evolution, than a deliberate feature.

The ULN2003AN Darlington Array, drives a 5 or 6 wire uni-polar motor. Changing the pin allocation in the ‘Global’ section of the ‘Wiring’ program is necessary with the current program.

Fitting a heat sink to the 780x (x = the motor supply voltage) IC and attaching a cooling fan will be necessary where more powerful stepper motors, consuming large amounts of current, are used.

Motors

A 5 volt bi-polar motor or 5 or 6 wire unipolar is adequate for the job, unless you have other requirements. Besides, there are several motor shields available for the Arduino if you prefer an alternative, for some reason.

Ebay has a plethora of unipolar 5v geared stepper motors for sale from Hong Kong (28BYJ-48 - advertised at 64 steps, it actually has 32 steps/rev and 1/64 gear ratio) - set the stepper speed and change the motorStep line of your Arduino script to suit your motor. Otherwise steppers come in various grades and steps - gearing of some type is highly recommended to reduce resonance.

Arduino motor shield

Astro-TEM-20110603-Arduino-Motor-Shield.jpg

Arduino Resources

Direction and Kill Switch wiring

Astro-TEM-20110603-MotorDirectionSwitchWiring.png

Arduino Code (incl. half stepping)

Stepper.h

Stepper.cpp

StepperDriver.brd (Eagle Board Milling)

StepperDriver.pdf (PCB Etching)

Parts list

Notes:

Copy and Paste the Arduino code to your editor and upload to the board.

The PCB pdf file prints the actual size of the shield to fit the Arduino (Decimilia or similar) - it was printed directly from Eagle. Print to a transfer medium then iron onto a single sided board for etching. It may be wise to print to paper first, cut out, and check for fit with the Arduino board. A Laser printer is required, as well as a 1mm and 0.8mm drills, fine hacksaw and file to cut to shape.

Refer to the parts list and use the image of the Arduino Motor Shield for guidance (note the two jumpers - logic setup). The 100uf capacitor is nearest the diode and 4 pin connection header, the 1uf capacitor is at the back of the shield. The L293D (SN754410NE) is the IC to the front of the image/board. The ULN 2003AN is located at the back of the board.

The Direction Switch is an 8 pin 3 position sliding switch. Terminal layout as shown, is 3 + 1 and 1 + 3. The limit switch, when closed, sets Pin2 LOW. Note, that in the Stop and Reverse positions Pin 3 is always LOW. Forward, sets Pins 2 and 3 HIGH, overriding the limit switch.

If problems are experienced getting the stepper motor to rotate; i.e., it ticks one way then the other, the motor wiring will need rearranging in the socket. If the motor turns the wrong way, plug the socket in the opposite way.

If intending to have a board made commercially, use the “Eagle Board Milling” file.

The “PCB Etching” file has bigger pads to improve adhesion during image transfer (ironing) and provides more copper for better adhesion to the board.

Warning the program makes use of the pull up resistors on the Arduino board for voltage protection. No resistors have been used in this design. Use of the L293D is recommended because it has in-built protection.

“Section 3” Concluding

It has been 2 years since designing the Tracker, and it is safe to say that it provides very accurate tracking up to 90 minutes, consistent with accurate polar alignment.

Appendix

Large Imperial version:

Similar profile to the Metric version, for exposures up to and beyond 60 minutes - say 90 minutes.

Drive Arm hinge - Drive Nut pinion / Drive Shaft centre = 16 inches; Drive Arm hinge - Contact Point = 14 inches; Drive Arm and Camera Arm hinge = 4 inches. Pack up the Camera Arm hinge with 2 layers of 80 gsm paper, because the uncorrected error after 60 minutes is half that of the metric version.

Compact Imperial version (see Section 3 Acknowledgements):

Indicates superior tracking up to 40 - 45 mins with no camera arm correction (packing up, as in the tracker design) and may be ideal for hand driven exposures of shorter duration. A computerised motor driven version should demonstrate exceptional tracking to 42 minutes - more than enough.

DA hinge - DN pinion / DS centre = 14” ; CA hinge - CP = 12.92” ; DA hinge - CA hinge = 1.9”. No packing is required. Calipers may be useful for measuring down to 1/100”.

Acknowledgements

Dave Trott,, the original designer of the Double Arm Drive, proposed the concept in the Sky and Telescope magazine, 1988. Containing a wealth of information, his web-site is also beautifully designed.

My brother, the interested sceptic, and the brains behind the spreadsheet. The spreadsheet enabled experimentation with various component dimensions.

Mike Mohaupt - whose Compact Imperial design prompted further research to optimise performance, which provided the data for 1/4” 20tpi dimensions.

Open source software (Linux) - Qcad.

Eagle PCB software and the Arduino Decimilia provided the tools to develop the electronics platform to drive the stepper motor.

Arduino half step library Note: The Stepper.cpp file above has been modified to suit Arduino 1.x (WProgram.h changed to Arduino.h)

Not forgetting Stellarium an excellent open source desktop planetarium.

GIMP the image manipulation program, another open source astronomical imaging tool.

Ivo Jaeger’s Star Tools

Pixinsight

The CHDK developers and many excellent sites devoted to digital astrophotography and Double Arm Drive design.

Licence

This work is licensed under a Creative Commons Attribution-Noncommercial 2.5 Australia License.

Disclaimer

The information on this site is provided in good faith. The author/owner of the material of this site accepts no responsibility for reader/user outcomes, of any nature, directly or indirectly associated with this and/or any other site associated with, or affiliated, by any means or interpretation. Please use the information freely, at your own risk.

Reading of Interest

Christianity

The Bible in Basic English. As the title indicates. Refreshingly easy to read and assimilate. Usually a free download for users of personal electronic devices - Android version of Cadre.

The Bible - what’s it all about?

God, the Creator, created ‘all’ things.

Man, given choice, decided upon self-determination, and, in so doing broke relationship with and is separated from his Creator for eternity

(Genesis) 》》》fast forward 》》》(New Testament)

Jesus Christ, the man (and Creator), died in place of all Men, who would otherwise die eternally (because of separation from their Creator), thereby, making a way to restore Man’s relationship with his Creator, through the intermediary of Jesus Christ.

The Bible instructs Man (implores), to believe what Jesus Christ, the Son of God did (died in place of man on a cross, buried, raised to life and ascended to be with God the Father). It follows, because only Jesus did those things, who Jesus is. Any person, believing what Jesus did is restored to relationship with the Creator and eternal life in Him. Man is regenerated, created anew for indwelling of the Spirit of God.

In a nutshell that’s the message of the Bible, of the good news (the Gospel). It’s all about the relationship between Man and his Creator - good and bad. A patient and loving Father rescuing a recalcitrant, delinquent child - Man, in preparation for the new creation, when this one passes away - entry requirement - know Jesus!

Word Studies in The Greek New Testament (Kenneth Wuest) Wuest has been the richest resource imaginable. Comprising 4 volumes, one of which is the Wuest version of the New Testament

Wuest, in conveying the richness of the Greek language, elaborates the New Testament demonstrating its consistency.

Escape From Reason (Francis A. Schaeffer). Escape From Reason is an inspiring work. For those who recognise, or suspect, that discovering the true nature of one’s being is hampered by the conventions of modern thinking, Escape From Reason is a must read.

The Last Superstition (Edward Feser). A rebuttal of atheist writings such as The God Delusion (Richard Dawkins) and that of other prominent atheist authors. A demanding read, but well worth the effort for those wanting to acquire an alternative perspective. Feser exposes the flaws in naturalistic and modernist thinking.

Consciousness And the Existence of God (J.P. Moreland). Very much an academic work, arguing God’s existence in view of human consciousness. Moreland discusses the unlikely emergence of consciousness from physical processes, postulated by a naturalistic world view.

Kingdom Triangle (J.P. Moreland). A must read. Not so academic. Moreland addresses the crisis of this age from the perspective of competing philosophies, Scientific Naturalism and Post Modernism and elaborates the underlying issues that invade human thinking.

Moreland exposes the truth about modern thinking and its departure from God mindedness, demonstrating very clearly where humanity is at, in this day and age.

The Scarlet Letter - Nathaniel Hawthorne. Included here, because it illustrates how man gets the Christian message so utterly wrong. Written in the 19th Century, Hawthorne illustrates the hypocritical, legalistic notions of 16th Century Puritans. Grace seldom abounds in a climate of self righteousness. The message forgotten so readily amid the clamour of the fallen human condition.

Jane Eyre - (Charlotte Bronte). The Wikipedia entry describes Jane Eyre as early feminist writing and moralistic. Seen through secular eyes, that’s as close as one might get to the substance of Jane Eyre.

Given the propensity for secularism to misinterpret Christian concepts, indeed, Spirit led behaviour, in the midst of human weakness, it’s not surprising that Jane Eyre is interpreted as such - a poor substitute for the truths within.

Jane Eyre is however, an exposition of human frailty, beautifully characterized in all its light and shade. Above all a story of redemption and the enduring heart of the Christian soul, empowered by the Spirit of God, in the salvation of Christ.

As far as gender distinctions are concerned, Paul the apostle tells the Romans, that all are one in Christ, that distinctions are neither present nor made. Concluding, that whatever distinctions exist are those made by men, and are not the vestiges of Christ.

The Lost History of Christianity: The Thousand-Year Golden Age of the Church in the Middle East, Africa, and Asia–and How It Died (Philip Jenkins). I found this an engaging read. The early Christian church was extremely successful and then, it all but disappeared. The author at times refers to the declining success of Christianity as a religion or faith, indicating that it survives still.

Though not intended by the author, the terms of reference are reminiscent of secular viewpoints about evolution - the success of a species, which in the atheist mind, perhaps, depersonalises Christian relationship with God.

As in the short commentary on Jayne Eyre, the secular worldview does not comprehend the Spirit led life, the Christian worldview. However, insight into what a large part of the Christian church may have become provides the perspective to explain its decline.

It is likely that the large denominational widespread elements of the Christian church had become edifices of human endeavour - organisational triumphs steeped in tradition and dogma, which inhibit a conscience led and spirit led life in Christ.

God will not let his people or those who might turn to him, languish in religious organisational facilitation of one’s relationship with Him.The work of men and not, God’s work in Man.

The parallels in today’s world are striking.

The message of the gospel is simple - as Paul put it. “There is only one gospel… …Christ crucified…”

Philosophy

The Republic (Plato).

The God Delusion (Dawkins). Richard has expended a good deal of energy making his point. The age old conjecture, God, no God, takes many forms, “The God Delusion” is another iteration. This time, evolution is the mainstay of the argument - an inevitable and predictable imperative for proponents of scientific naturalism. “The God Delusion” varies only, that unlike Pantheism (New Age), it avoids the suggestion of metaphysical intervention.

Science

The Smithsonian Intimate Guide to the Cosmos - Visualising the Realities of Space (Dana Derry). Beautifully illustrated. A pictorial guide to the universe, with some informative and interesting comment.

The special theory of relativity (Albert Einstein - of course) - Does this really need an introduction? Time, it seems, shapes not only the universe constraining its limits, but shapes the lives of everyone.

Psychology

The Psychopathic Mind (J. Reid Meloy) - An academic work - a must read for those with an interest.

The Wisdom of Psychopaths(Prof. Kevin Dutton) - A look at the nature of psychopathy, as it applies in many walks of life.

The Good Intentions of a Criminal Psychopath (Steven Lubeck) - As the title indicates. A practical lesson in the nature of psychopathy.

General

The Sound of One Hand Clapping (Richard Flanagan) - Set in Tasmania. The style of writing is unusual but effective. An excellent and in some ways disturbing read

Galileo: A Dramatised Life (Gerald Smith) - An interesting approach that traces the life of Galileo in some detail.

Rogue Economics: Capitalisms new reality (Loretta Napoleoni) - If you want to know what drives world economics, Rogue Economics is a must.

Blind Man’s Bluff (Sherry Sontag and Christopher Drew, with Anette Lawrence Drew) - Blind Man’s Bluff traces the history of submarine espionage during the Cold War years. Fascinating reading.

The Brief Life of HMS Trooper (David Renwick Grant) - HMS Trooper served in the Mediterranean during World War II. A technical and personal look at the exploits of Trooper and its crew. If you have an interest in submarine life of that era, this book is a good resource while serving as a tribute to submariners, many of whom were lost, as was the Trooper.

White Fang (Jack London) - A classic. More than a story of survival and the pressing need to live in a hostile environment. White Fang is a story about the nature of men, good and bad.

The Rough Guide to The Da Vinci Code (Michael Haag and Veronica Haag). More informative than the Da Vinci Code.

Fast Infrared (FIR) how-to for applicable Toshiba laptops

I wrote this several years ago. It was intended for Slackware and now includes ubuntu 8.10, 9.04, 10.04 and 11.x - not tested. However, it may be getting a little out of date and for reference only.

IRDA (FIR mode) on Toshiba laptop with an smsc-ircc IrDA device and no BIOS setting.

Because the laptop came with IRDA, this was more of a challenge than anything else, and more difficult than first imagined. Most people get SIR working, I didn’t!

Acknowledgements to the various IR sites - GMane in particular.

——————————————————————–

If your laptop (Toshiba) is equipped with an “ISA bridge: Intel Corporation 82801DBM (ICH4-M) LPC Interface Bridge”, and a 24cc controller or similar, it will require the smsc-ircc2 kernel module driver. Patches are added from time to time and may be viewed on Gmane; http://blog.gmane.org/gmane.linux.irda.general

If you want to support a specific combination of bridge and controller Gmane may be a good place to start, to see if your combination is supported.

Distribution

Slackware 11.0, 12.0 and 12.1 running a recent 2.6.x kernel, and more recently ubuntu up to 11.x
Please read the documentation for your distribution.

NOTE: The smsc-ircc2 module is experimental and may break your system.

Software requirements

Latest irdautils, openobex and recent kernel (2.6.17.13 at the time of writing) (still working with 2.6.26.3 and ubuntu 2.6.27-9-generic - plus).

Kernel setup

Not an issue with ubuntu

Networking > IRDA (compiled as modules).
ISA and Serial support enabled (SIR capable).

The smsc-ircc2 module is experimental, therefore it is necessary to set > Code maturity level options > Prompt for development and/or incomplete code/drivers = y.

Please refer to the many howto’s on compiling and installing the linux kernel.

IrDA hardware

PCI by name (the relevant bits)

#lspci -v
00:1f.0 ISA bridge: Intel Corporation 82801DBM (ICH4-M) LPC Interface Bridge (rev 03)
Flags: bus master, medium devsel, latency 0
PCI by numbers

#lspci -v -n
00:1f.0 0601: 8086:24cc (rev 03)
Flags: bus master, medium devsel, latency 0
Install the software and then create the IrDA devices (linux irda howto - 2.6 kernel)

# mknod /dev/ircomm0 c 161 0
# mknod /dev/ircomm1 c 161 1
# mknod /dev/irlpt0 c 161 16
# mknod /dev/irlpt1 c 161 17
# mknod /dev/irnet c 10 187
# chmod 666 /dev/ir*
Set the aliases in /etc/modprobe.d - Kernel 2.6.x requires a separate entry eg. /etc/modprobe.d/smsc-ircc2 will do.

Regardless of options placed in modprobe.d, I chose to pass the required options during modprobe. It was impossible to load the module otherwise.

alias irda0 smsc-ircc2
alias tty-ldisc-11 irtty-sir
alias char-major-161 ircomm-tty
alias char-major-10-187 irnet
For information on your chip, run smcinit

NOTE: Other than for setup, never run smcinit to initialize the smsc-ircc IrDA device - it will prevent IR from working.

#smcinit -v
smcinit 0.5cvs
SIR ioport: 0×3f8
FIR ioport: 0×130
FIR interupt: 3
FIR DMA: 3
Detected IO hub vendor id: 0×8086
Detected IO hub device id: 0×24cc.
Detected Chip id: 0×7a
SIR ioport register write: 0xfe read: 0xfe
FIR interrupt register write: 0×3 read: 0×3
FIR ioport register write: 0×26 read: 0×26
FIR dma register write: 0×3 read: 0×3
Initialization of the SMC 47Nxxx succeeded
Windows device manager indicates the following values

I/O 02f8 - 02FF (SIR)
I/O 0130-0137 (FIR)
IRQ 07 (FIR)
DMA 01 (FIR)
Controller 24cc
There are differences in some values between Windows and smcinit. I used the smcinit values.

The SIR serial device in this case is /dev/ttyS0
but may vary depending on your hardware.

To confirm

#setserial /dev/ttyS0
/dev/ttyS0, UART: 16550A, Port: 0×03f8, IRQ: 4
From smcinit above, SIR ioport: 0×3f8 = /dev/ttyS0 Port: 0×03f8.
dmesg will provide the same information concerning your serial ports, however, it may be necessary to match the correct serial driver with the irda hardware, as they may vary from machine to machine.

To initialize FIR, first disable the serial device

#setserial /dev/ttyS0 uart none
or whatever your SIR port /dev/ttySX is.

Load the smsc-ircc2 module using the values provided by smcinit;

#modprobe smsc-ircc2 -v –ignore-install ircc_dma=3 ircc_irq=3 ircc_fir=0×130 ircc_sir=0×3f8
–ignore-install was not always necessary, but occasionally the module would not load without it? See “man modprobe” for details. ircc_dma=7 works also. Otherwise, the values are fixed as far as I can tell. -v for debugging.

dmesg

# dmesg grep | tail
Detected unconfigured Toshiba laptop with Intel 8281DBM LPC bridge SMSC IrDA chip, pre-configuring device.
Setting up Intel 82801 controller and SMSC device
Overriding FIR address 0×0130
Overriding SIR address 0×03f8
SMsC IrDA Controller found
IrCC version 2.0, firport 0×130, sirport 0×3f8 dma=3, irq=3
No transceiver found. Defaulting to Fast pin select
IrDA: Registered device irda0
Then

#irattach irda0 -s
If all has gone well you should see something similar to this in /var/log/messages

#tail /var/log/messages
Oct 20 16:32:38 localhost irattach: executing: ‘/sbin/modprobe irda0′
Oct 20 16:32:38 localhost irattach: executing: ‘echo xx > /proc/sys/net/irda/devname’
Oct 20 16:32:38 localhost irattach: executing: ‘echo 1 > /proc/sys/net/irda/discovery’
Oct 20 16:32:38 localhost irattach: Starting device irda0
“xx” the laptop - 1 device discovered.

Then run irdadump to verify the whole process. You should see your computer and any device that you used to test the link. In this case a Palm.

#irdadump
07:32:53.284907 xid:cmd 286e7df5 > ffffffff S=6 s=5 (14)
07:32:53.374893 xid:cmd 286e7df5 > ffffffff S=6 s=* xx hint=0400 [ Computer ] (18)
07:32:54.462330 xid:rsp 286e7df5 < 3ea004c9 S=6 s=5 zz hint=8220 [ PDA/Palmtop IrOBEX ] (20)
07:32:55.834526 xid:cmd 286e7df5 > ffffffff S=6 s=0 (14)
xx is the computer name, zz is the Palm username.

And, just to be sure, the following shows the Palm device.

# cat /proc/sys/net/irda/discovery
IrLMP: Discovery log:
nickname: zz, hint: 0×8220, saddr: 0×286e7df5, daddr: 0×3ea004c9
This start|stop|restart script is adapted from the slmodemd script. Added module loading and unloading, to ensure that all relevant modules are loaded before the smsc-ircc2 module, otherwise IR will not work, and to unload the modules when stopping IR, ready for the next start. Not really necessary, but it is cleaner and prevents problems.

NOTE: Don’t use this script in ubuntu

#!/bin/sh
# rc.irda
#
# Start irda
#
irda_start()
{
if [ -x /sbin/setserial ]; then
echo -n “Starting irda:”
/sbin/setserial /dev/ttyS0 uart none
/sbin/modprobe ircomm
/sbin/modprobe ircomm-tty
/sbin/modprobe smsc-ircc2 –ignore-install ircc_dma=3 ircc_irq=3 ircc_fir=0×130 ircc_sir=0×3f8
/usr/sbin/irattach irda0 -s
fi
}
irda_stop()
{
echo “Shutting down irda”
killall irattach
/sbin/rmmod smsc-ircc2
/sbin/rmmod ircomm-tty
/sbin/rmmod ircomm
/sbin/rmmod irda
}
irda_restart()
{
irda_stop
sleep 1
irda_start
}
case “$1” in
’start’)
irda_start
;;
’stop’)
irda_stop
;;
‘restart’)
irda_restart
;;
*)
echo “usage $0 start|stop|restart”
esac

Make it executable - as su or sudo

#chmod +x /etc/rc.d/rc.irda
Run as su or sudo

#/etc/rc.d/rc.irda
Irlan, irnet, rfcomm, phone and pda connections etc, are adequately explained in other tutorials.

I did manage to sync the Palm with my desktop. Set /dev/ircomm0 in Kpilot or Jpilot preferences. If you are using Gnome, it’s under Evolution, Edit>Synchronisation options… menu, or the Gnome Preferences menu.
ubuntu setup: up to and including 11.x should be OK.

1. Ubuntu kernel has smsc-ircc2 module configured.
2. In /etc/modprobe.d/irda-utils add line: alias irda0 smsc-ircc2
3. In /etc/default/irda-utils edit: DEVICE=”irda0” SETSERIAL=”/dev/ttyS0” SMCINIT=”no”
4. In /etc/init.d/irda-setup under FIR=”smsc-ircc2”; add line
OPTIONS=”–ignore-install ircc_dma=3 ircc_irq=3 ircc_fir=0×130 ircc_sir=0×3f8”
NOTE: Invoking smcinit or setting to “yes” in /etc/defaults/irda-utils prevents the operation of IR. Ensure other related modules are loaded before invoking /etc/init.d/irda-utils start.

Radio Astronomy - Square Kilometer Array (SKA)

Readers may be interested in the SKA (Square Kilometer Array) project under development in South Africa. A €150 billion project intended to be the most sensitive instrument available to radio astronomers to date, probing the depths and ‘extremities’ of the cosmos, costing ~€100 million annually to run.

It seems that humanity seeks to discover its origins, to confirm theories and ideas, explore new possibilities and learn more about its place in the universe. For some, confirmation of generally accepted theories such as evolution and the search for extraterrestrial life - for others verification of intelligence and purpose.

Richard Hawking’s once said that “understanding the intricate workings of the universe would be to know the mind of God - a supreme triumph of human reason”. The workings of a clock however, has little bearing on the ability of the user to tell the time - the intricacies are intended for that purpose - cosmologically, if only to sustain life and provide an avenue for consciousness…

Regardless of ones philosophical disposition, radio astronomy provides a window into the unknown regions of the cosmos. Should we inquire - is the money better spent? The argument that mankind has lived quite successfully without this knowledge is contextually correct, because the tools were not available, not because of a perception that knowledge of the cosmos has little relevance to everyday life - it has, because it’s the stuff that builds on the knowledge of who we are - and isn’t that what everyone wants to know?